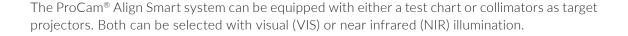
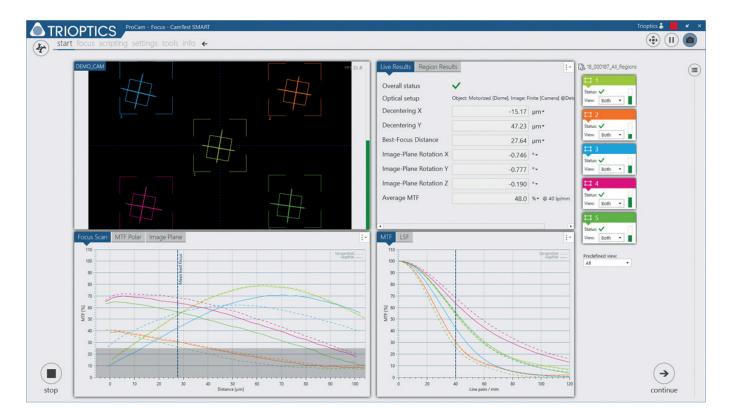


ProCam® Align Smart

The most precise instrument for active alignment of camera modules and LiDAR systems




ProCam® Align Smart

With the measurement and production instruments of the ProCam® series we offer solutions for the critical challenge of active alignment and assembly of high-precision optical sensor systems. Due to an automated production process based on unique algorithms, our systems ensure accurate, repeatable and fast alignment and thus a better image quality of the camera modules. The optimisation of image quality through the use of active alignment technology leads to a reduction in production rejects. Active alignment is therefore an efficient production method for high-end camera and LIDAR applications, resulting in high yield and best image quality.

Proven active alignment technology

- Active alignment with sub-micron/sub-arc min resolution
- Five or six alignment axes
- Suitable for wide-angle optics with a field of view (FOV) up to 170°1)
- Alignment of sensor to the camera optics and vice versa
- The components are focused in a single alignment step, centered, tilt-adjusted and rotated with respect to each other
- For stereo or triple cameras as well as for LiDAR systems

ProCam® Software for the fully-automated active alignment process

- High precision image analysis algorithms: all relevant parameters for the accurate alignment process (such as the MTF at multiple field positions and the tilt of the image plane) are automatically analyzed in real-time and used in the alignment process
- With the integrated scripting tool, the measurement and alignment process can easily be tailored to specific customer needs and products
- The measurement data can be saved in a database so that the process is completely traceable
- Configuration files for different types of camera modules for fast product change over

Worldwide support & service

- Close network of service centers in Asia, USA and Europe
- Individual training and consulting at TRIOPTICS or on site at customers' location
- Online service portal with email ticket system
- IT-based remote maintenance
- Individual maintenance and service contracts

Technical Data

	ProCam® Align Smart
Alignment axes	5 or 6
Resolution linear	0.2 μm (X,Y) 0.08 μm (Z)
Resolution rotatory	2.5 μrad (Θx, Θy) 5 μrad (Θz)
Repeatability linear	± 0.15 μm (X,Y) ± 0.06 μm (Z)
Repeatability rotatory	± 2 μrad (Θx, Θy) ± 3 μrad (Θz)
Typical sample alignment accuracy, linear	± 2 μm¹)
Typical sample alignment accuracy, rotatory	± 1.7 mrad¹) (Sensor to sensor) ± 3.5 mrad¹) (Sensor to mechanical reference)
Sample objective lens EFL	0.7 mm 30 mm (1 mm 12 mm Standard)
Sample objective lens diameter	4 mm 30 mm (smaller or bigger diameter on request)
Field of view test chart	up to 70° (up to 100° possible after individual clarification)
Field of view collimators	up to 160° mechanical set up ²⁾ up to 140° for optical measurement ³⁾
Test targets	Test chart or collimators Available with VIS or NIR
Performance	<60 sec. process time (without sample loading/unloading) Process time calculated on following parameter: sensor board initialization time <1 s, camera frames >30 fps, continuous images from camera, UV snap curing <2s with preselected lenses.
Dimensions (h x w x d)	1.840 mm x 1.700 mm x 1.100 mm
Camera interface	MIPI, Parallel, LVDS, Analog or directly to PC via e.g. USB, FireWire, CamLink, GigE and others
Weight	600 kg 800 kg
Туре	stand alone

¹⁾ Typical accuracy reached on following sample parameter: pixel size $6\mu m$, F# = 2.8, EFL = 4.5mm.

²⁾ Up to 180° possible after individual clarification, depending on sample and mechanical surrounding, for bigger FoV technical investigations necessary.

³⁾ Depending on distortion, individual clarification necessary.

